The Role of MDM2 in Promoting Genome Stability versus Instability

نویسندگان

  • M Reza Saadatzadeh
  • Adily N Elmi
  • Pankita H Pandya
  • Khadijeh Bijangi-Vishehsaraei
  • Jixin Ding
  • Christopher W Stamatkin
  • Aaron A Cohen-Gadol
  • Karen E Pollok
چکیده

In cancer, the mouse double minute 2 (MDM2) is an oncoprotein that contributes to the promotion of cell growth, survival, invasion, and therapeutic resistance. The impact of MDM2 on cell survival versus cell death is complex and dependent on levels of MDM2 isoforms, p53 status, and cellular context. Extensive investigations have demonstrated that MDM2 protein-protein interactions with p53 and other p53 family members (p63 and p73) block their ability to function as transcription factors that regulate cell growth and survival. Upon genotoxic insults, a dynamic and intricately regulated DNA damage response circuitry is activated leading to release of p53 from MDM2 and activation of cell cycle arrest. What ensues following DNA damage, depends on the extent of DNA damage and if the cell has sufficient DNA repair capacity. The well-known auto-regulatory loop between p53-MDM2 provides an additional layer of control as the cell either repairs DNA damage and survives (i.e., MDM2 re-engages with p53), or undergoes cell death (i.e., MDM2 does not re-engage p53). Furthermore, the decision to live or die is also influenced by chromatin-localized MDM2 which directly interacts with the Mre11-Rad50-Nbs1 complex and inhibits DNA damage-sensing giving rise to the potential for increased genome instability and cellular transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mdm2 affects genome stability independent of p53.

Mdm2 is a critical negative regulator of the p53 tumor suppressor and is frequently overexpressed in human cancers. However, reports, including our own studies, suggest that Mdm2 has both p53-dependent and p53-independent functions that contribute to genomic instability and transformation when deregulated. We recently elucidated a p53-independent role for Mdm2 in the regulation of the DNA doubl...

متن کامل

Role of Mdm2 and Mdmx in DNA repair

Mdm2 and Mdmx are critical regulators of the p53 tumour suppressor and are overexpressed in many human malignancies. However, in recent years, their impact on genome instability was shown to be at least, in part, independent of p53. Both Mdm2 and Mdmx inhibit DNA break repair through their association with the Mre11/Rad50/Nbs1 DNA repair complex. Recent evidence indicates that harnessing Mdm2 a...

متن کامل

Mutations in MAPT gene cause chromosome instability and introduce copy number variations widely in the genome.

In addition to the main function of promoting polymerization and stabilization of microtubules, other roles are being attributed to tau, now considered a multifunctional protein. In particular, previous studies suggest that tau is involved in chromosome stability and genome protection. We performed cytogenetic analysis, including molecular karyotyping, on lymphocytes and fibroblasts from patien...

متن کامل

Mathematical modeling of G2/M phase in the cell cycle with involving the p53/Mdm2 oscillation system

In the cell cycle, the disruption of a checkpoint control mechanism for G2/M phase which monitors DNA damages is one of the triggers for oncogenic transformation. The major event of this mechanism is the p53/Mdm2 signaling pathway-mediated repression of M-phase Promoting Factor (MPF) activation. With the occurring some DNA damages, the protein levels of the p53/Mdm2 shows the oscillation, and t...

متن کامل

F-box protein FBXO31 directs degradation of MDM2 to facilitate p53-mediated growth arrest following genotoxic stress.

The tumor suppressor p53 plays a critical role in maintaining genomic stability. In response to genotoxic stress, p53 levels increase and induce cell-cycle arrest, senescence, or apoptosis, thereby preventing replication of damaged DNA. In unstressed cells, p53 is maintained at a low level. The major negative regulator of p53 is MDM2, an E3 ubiquitin ligase that directly interacts with p53 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017